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SUMMARY

An implicit, spectral algorithm for the analysis of unsteady flow problems governed by the Laplace
operator in corrugated geometries is described. The algorithm treats the physical boundary conditions as
constraints along lines internal to the solution domain. The method eliminates the need for coordinate
generation and can be quickly adapted to changing geometries. Various tests confirm the spectral accuracy
in space and the first- and second-order accuracies in time. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Immersed boundary condition methods involve the use of fixed computational domain with the
physical domain of interest submerged inside the computational domain. The name has been coined
by Peskin [2] in the context of cardiac mechanics problem. These methods represent a form of
meshless methods, where one works with a simple grid system but has to face the challenge
associated with the imposition of boundary conditions along the edges of the physical domain.
Their advantage lies in the elimination of the costly generation of boundary conforming grid. The
physical boundary conditions represent constraints imposed on the field equations, i.e. the problem
formulation is closed not by boundary conditions but by a set of constraints.

The prevailing methods of imposition of constraints involve introduction of additional forcing
that makes the fluid to move along the physical boundary and thus have roots in the physics of
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the problem. The details of the procedures based on the so-called continuous and discrete forcing
are reviewed in [1]. Alternative group of methods has its roots in the methodology developed
for handling the moving boundary problems and has been reviewed in [3]. Here, the fixed grid
methods are of particular interest with the most popular one based on the fluid fluxes and known as
the volume of the fluid method. All these methods are of low order in terms of spatial accuracy as
they are based on the low-order finite-difference and/or finite-volume discretizations. Additional
questions arise in the context of validity and character of the solution of the field equations in the
non-physical area located outside the physical domain but inside the computational domain. This
issue awaits further investigations.

A formal imposition of internal constraints is described in [4]. This method, which is spectrally
accurate, uses representation of flow boundary in the spectral space and imposes constraints by
nullifying the relevant Fourier modes. The applicability of this method is limited to geometries
that can be represented in terms of Fourier expansions, but its attractiveness is associated with
the mathematical formalism and high accuracy. Since this method is particularly suitable for the
analysis of flows in rough/corrugated geometries being of interest to us, we focus the present work
on the extension of this method to time-dependent situations.

This paper is organized as follows. Section 2 defines the model problem. Section 3 describes the
immersed boundary conditions method. Section 4 discusses the domain transformation method.
This method uses the classical methodology for the enforcement of boundary conditions and
thus provides a good reference point. Section 5 describes results of testing of both the methods.
Section 6 compares critically both the methods and Sections 7 provides a summary of the main
conclusions.

2. MODEL PROBLEM

Consider unsteady conductive heat flow in a slot bounded by corrugated walls whose geometry is
described by the following relations (see Figure 1):

yL(x)=−1 +
∞∑

n=−∞
H (n)
L ein�x (1a)

yU(x)= 1 +
∞∑

n=−∞
H (n)
U ein�x (1b)

1
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yU(x)
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Figure 1. Sketch of the domain of interest in the physical plane.
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where H (n)
L = H (−n)∗

L , H (n)
U = H (−n)∗

U and asterisk denotes complex conjugate. The slot is periodic
with wavelength � = 2�/� and extends to ±∞ in the x-direction. The dimensionless field equation
describing heat flow has the form

�2�
�x2

+ �2�
�y2

= ��

�t
(2)

This equation needs to be supplemented by suitable initial and boundary conditions that are taken
to be in the form

�(x, y, t = 0) = �i (3)

�(x, yL(x), t) =CL = const (4a)

�(x, yU(x), t) =CU = const (4b)

The main difficulty in finding a solution to (2), (3), (4a) and (4b) is associated with the irregular
form of the slot. We shall develop two methods, i.e. a method based on the concept of immersed
boundary conditions and a method based on the concept of coordinate transformation. The second
method is used as a reference method to judge the efficiency and accuracy of the immersed
boundary conditions method. We shall begin our discussion with the former method.

3. THE IMMERSED BOUNDARY CONDITIONS METHOD

We are interested in the determination of the solution of (2), (3), (4a) and (4b) with spectral
accuracy. We shall use the Fourier expansion in the x-direction and expansion in terms of the
Chebyshev polynomials in the y-direction. The standard definition of Chebyshev polynomials uses
domain (−1, 1), however, the physical domain is confined between (1+YU) and (−1−YL), where
YU and YL denote locations of extremities of the domain of interest (see Figure 1). The first step in
the solution process involves a mapping from the physical (x, y) coordinates to the computational
(x, ŷ) coordinates in the form

ŷ = 2
y − (1 + YU)

1 + YU − (−1 − YL)
+ 1 (5)

where ŷ ∈ 〈−1, 1〉. The governing equation takes the form

�2�
�x2

+ �2 �2�
�ŷ2

= ��

�t
(6)

where � = 2/(2 + YU + YL). The locations of the corrugated boundaries in the (x, ŷ) plane are
given as

ŷL(x)=
∞∑

n=−∞
A(n)
L ein�x (7a)

ŷU(x)=
∞∑

n=−∞
A(n)
U ein�x (7b)
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1768 S. Z. HUSAIN AND J. M. FLORYAN

where A(0)
L = 1 + �[−2 − YU + H (0)

L ], A(n)
L = �H (n)

L for n �= 0, A(0)
U = 1 + �[−YU + H (0)

U ],
A(n)
U =�H (n)

U for n �= 0. The boundary conditions at the transformed boundaries become

�(x, ŷL(x), t) =CL (8a)

�(x, ŷU(x), t) =CU (8b)

The solution can be represented in the form of Fourier expansion as

�(x, ŷ, t) =
∞∑

n=−∞
�(n)(ŷ, t)ein�x ≈

NM∑
n=−NM

�(n)(ŷ, t)ein�x (9)

where �(n)(ŷ, t) =�(−n)∗(ŷ, t) and asterisk denotes complex conjugate. Substitution of (9) into
the field equation and separation of Fourier components lead to an uncoupled system of parabolic
partial differential equations for �(n), n ∈ 〈0, NM〉, of the type

��(n)

�t
= (�2D2 − n2�2)�(n) (10)

where D = d/dŷ. Two types of temporal discretizations are used. The two-step implicit method
results in the following relations:

[�2D2 − (n2�2 + 1.5�t−1)]�(n)
�+1 =−2�t−1�(n)

� + 0.5�t−1�(n)
�−1, n ∈ 〈0, NM〉 (11)

while similar relations resulting from the one-step, self-starting implicit method are shown in
Appendix A. In the above equation, the subscript � denotes the time step and �t stands for
the (constant) length of the time step. Relation (11) has the form of inhomogeneous ordinary
differential equation for �(n)

�+1. The following discussion will be carried out in the context of the
two-step method, while the relevant relations for the one-step method can be readily deduced.

The unknown functions �(n)
�+1 can be represented in terms of expansions based on Chebyshev

polynomials in the form

�(n)
�+1(ŷ) =

∞∑
k=0

G(n)
k,�+1Tk(ŷ) ≈

NT∑
k=0

G(n)
k,�+1Tk(ŷ) (12)

where Tk denotes the Chebyshev polynomial of kth order and G(n)
k,�+1 are the unknown coefficients

of the expansion. Substitution of (12) into (11) gives

[�2D2 − (n2�2 + 1.5�t−1)]
∞∑
k=0

G(n)
k,�+1Tk = −2�t−1

∞∑
k=0

G(n)
k,�Tk + 0.5�t−1

∞∑
k=0

G(n)
k,�−1Tk (13)

We use Galerkin procedure to develop equations for the unknowns G(n)
k,�+1, i.e. we multiply both

sides of (13) by Tj (ŷ) and integrate with the weight function �̂= 1/
√
1 − ŷ2 to obtain

NT∑
k=0

[〈Tj , D
2TK 〉 − (n2�2 + 1.5�t−1)〈Tj , TK 〉]G(n)

k,�+1

=−2�t−1
NT∑
k=0

〈Tj , TK 〉G(n)
k,� + 0.5�t−1

NT∑
k=0

〈Tj , TK 〉G(n)
k,�−1, j ∈ 〈0, NT〉 (14)
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where the inner product is defined as 〈 f j (ŷ), gk(ŷ)〉= ∫ 1
−1 f j (ŷ)gk(ŷ)�̂(ŷ) dŷ. Equation (14) can

be simplified by taking advantage of the well-known orthogonality properties, i.e.

〈Tj (ŷ), TK (ŷ)〉 =

⎧⎪⎨
⎪⎩
0 for j �= k

� for j = k = 0

�/2 for j = k>0

Equation (14) leads to NT −1 algebraic equations for each Fourier mode; two additional equations
required for each Fourier mode in order to close the system need to be derived from the boundary
conditions.

The flow boundary conditions are to be enforced along the lines ŷL(x) and ŷU(x) while the solu-
tion domain remains fixed at ŷ ∈ 〈−1, 1〉. To explain the immersed boundary conditions method in
general, we evaluate the unknown �l(x)≡ �(x, f (x)) along an arbitrary line, l := {(x, y):y = f (x)},
such that f is a periodic function with period � = 2�/� and | f (x)|�1. The function f (x) can be
expressed without losing generality as

f (x)=
∞∑

n=−∞
P(n)ein�x ≈

NA∑
n=−NA

P(n)ein�x (15)

where one in practice deals with a finite number of terms NA. The unknown �l(x) is periodic with
the same period � and thus can be expressed in terms of Fourier series as

�l(x)≡ �(x, f (x))=
N�∑

n=−N�

�(n)ein�x (16)

Each modal function is approximated by polynomials up to order NT and thus the length of this
expansion is N� = NTNA + NM. Since the flow representation is limited to NM + 1 modes, we
will be able to enforce constraints only on the first (NM + 1) terms in (16). The same unknown
can be expressed using the discretized form of the solution, i.e.

�l(x)=
NM∑

n=−NM

�(n)( f (x))ein�x =
NM∑

n=−NM

NT∑
k=0

G(n)
k,�+1Tk( f (x))e

in�x (17)

Since Tk( f (x)) is periodic in x , it can be expressed in terms of Fourier expansion as follows:

Tk( f (x))=
∞∑

m=−∞
w

(m)
k eim�x (18)

The expansion coefficients in (18) can be evaluated with the help of the recurrence relation for
Chebyshev polynomials in the form Tk+1(ŷ) = 2ŷTk(ŷ) − Tk−1(ŷ) that leads to the following
recurrence relation:

w
(m)
k+1 = 2

∞∑
n=−∞

P(n)w
(m−n)
k − w

(m)
k−1 (19)

whose evaluation begins at k = 0 and results in

w
(0)
0 = 1, w

(m)
0 = 0 for |m|�1, w

(m)
1 = P(m) for |m|�0 (20)
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1770 S. Z. HUSAIN AND J. M. FLORYAN

Substitution of (18) into (17) gives

�l(x)=
NM∑

n=−NM

NT∑
k=0

∞∑
m=−∞

G(n)
k,�+1w

(m)
k ei(n+m)�x =

∞∑
n=−∞

NM∑
m=−NM

NT∑
k=0

G(m)
k,�+1w

(n−m)
k ein�x (21)

and comparison of (16) with (21) gives

�(n) =
NM∑

m=−NM

NT∑
k=0

G(m)
k,�+1w

(n−m)
k (22)

which can be used to express boundary conditions along the lines ŷL(x) and ŷU(x). In the case of
our model problem, these boundary conditions take the following form:

NM∑
m=−NM

NT∑
k=0

G(m)
k,�+1(wU)

(n−m)
k =

{
CU for n = 0

0 for n �= 0
(23a)

NM∑
m=−NM

NT∑
k=0

G(m)
k,�+1(wL)

(n−m)
k =

{
CL for n = 0

0 for n �= 0
(23b)

with (23a) and (23b) corresponding to the upper and lower walls, respectively. Equations (14),
(23a) and (23b) form a complete set of algebraic equations for the unknown coefficients G(n)

k,�+1,
k = 0, . . . , NT, n = 0, . . . , NM. In the case of a constant time step, the coefficients of the discretized
Equations (14) do not depend on time and thus the corresponding matrix of coefficients needs
to be inverted only once; the solution process at the subsequent time steps reduces to a simple
multiplication of the inverted matrix and the right-hand side of the discretized system. The steady
version of the algorithm can be readily developed (description omitted from this presentation). We
shall refer to the above method of solution as the ‘direct algorithm’.

The matrix of coefficients can be very large when a large number of Fourier modes is required
and this motivates search for a method of solution that avoids construction as well as inversion
of the complete matrix. The matrix has a structure shown in Figure 2(a) with the horizontal lines
showing the coupling effect of boundary conditions (23a) and (23b) and the blocks of coefficients
in the upper triangular form resulting from the discretization of the differential equation (10)
forming a band along diagonal. The matrix can be reduced to a real form by taking advantage
of the complex conjugate properties �(n)(ŷ, t) = �(−n)∗(ŷ, t) (see Equation (9)) resulting in a
very similar structure, as shown in Figure 2(b). Such a structure suggests the use of an iterative
solution algorithm based on the decoupling of Fourier modes. The unknowns corresponding to a
Fourier mode of interest in Equations (23a) and (23b) at the current time step can be expressed
in terms of the remaining Fourier modes using their values from the previous time step (or from
the previous iteration). The solution process begins with mode 0, proceeds to the next mode using
the most recent information available and continues until the last mode NM is reached, and then
it is repeated until a convergence criterion is satisfied. In this way, the inversion of the complete
matrix of size (NT + 1) ∗ (2NM + 1) is replaced by a repetitive solution of system of (NT + 1)
equations for each Fourier mode. The rate of convergence is generally very good; it decreases with
an increase in the amplitude S and the wavenumber � of the corrugation. We shall refer to the
iterative algorithm as the ‘decoupled algorithm’ and discuss performance of its various variants in
Section 6. We wish to stress at this moment that the use of the decoupled algorithm significantly
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IMMERSED BOUNDARY CONDITIONS METHOD 1771

Figure 2. Structure of the coefficient matrix resulting from the implementation of the immersed boundary
conditions method for NM = 10 and NT = 70 for the model problem (33). Only non-zero elements are

marked. (a) Complex form and (b) real form.

reduces memory requirements as one needs to work with many small matrices rather than the one
with very large matrix as well as it opens the possibility for parallelization of the computations.
This issue becomes significant in the case of three-dimensional problems and large number of
Fourier modes and Chebyshev polynomials.

4. THE DOMAIN TRANSFORMATION METHOD

In this approach, the corrugated slot in the physical domain (x, y) is mapped into a straight slot
in the computational domain (�, 	) using mapping in the form

� = x, 	 = 2
(y − yU(x))

yU(x) − yL(x)
+ 1 (24)

After mapping, Equation (1a) and (1b) take the form

�2�
�	2

+ W1(�, 	)
��

�	
+ W2(�, 	)

�2�
���	

+ W3(�, 	)
�2�

��2
=W3(�, 	)

��

�t
(25)

whereW1(�, 	) = 	xx/(	
2
x+	2y),W2(�, 	) = 2	x/(	

2
x+	2y) andW3(�, 	) = 1/(	2x+	2y). Expressions

for 	x , 	xx and 	y are given in Appendix B. Solution of (25) is represented in terms of Fourier
expansion as

�(�, 	, t) =
∞∑

n=−∞
�(n)(	, t)ein�� ≈

NM∑
n=−NM

�(n)(	, t)ein�� (26)
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1772 S. Z. HUSAIN AND J. M. FLORYAN

where �(n) = �(−n)∗ and the known coefficients W1, W2 and W3 are replaced by their Fourier
expansions

W1(�, 	) =
2NM∑

m=−2NM

w
(m)
1 (	)eim��, W2(�, 	) =

2NM∑
m=−2NM

w
(m)
2 (	) eim��

W3(�, 	) =
2NM∑

m=−2NM

w
(m)
3 (	) eim��

(27)

Substitution of (26) and (27) into (25), separation of Fourier components and the use of a two-step
implicit method for the temporal discretization lead to

D2�(n)
�+1 +

NM∑
s=−NM

[w(n−s)
1 + is�w

(n−s)
2 ]D�(s)

�+1 −
NM∑

s=−NM

[(s�)2 + 1.5�t−1]w(n−s)
3 �(s)

�+1

=−2�t−1
NM∑

s=−NM

w
(n−s)
3 �(s)

� + 0.5�t−1
NM∑

s=−NM

w
(n−s)
3 �(s)

�−1, n ∈ 〈0, NM〉 (28)

where D = d/d	. A similar expression for the one-step implicit method can be found in Appendix A.
The reader may note that all Equations (28) are coupled together through the variable coefficients.
The unknown �(n)

�+1(	) can be expressed with spectral accuracy using Chebyshev expansion in the
form

�(n)
�+1(	) =

∞∑
k=0

F (n)
k,�+1 Tk(	) ≈

NT∑
k=0

F (n)
k,�+1Tk(	) (29)

Using the Galerkin procedure described in Section 3 leads to NT−1 algebraic equations for F (n)
k,�+1

for each Fourier mode. The remaining closing conditions come from the boundary conditions.
The treatment of boundary conditions follows standard procedures. These conditions have the

form

�(�, 	 =−1, t) =CL (30a)

�(�, 	 = 1, t) =CU (30b)

Using (26) leads to boundary conditions for each Fourier mode in the form

�(0)(−1)=CL, �(n)(−1)= 0, n �= 0, �(0)(1)=CU, �(n)(1)= 0, n �= 0 (31)

Introduction of Chebyshev expansion (29) leads to the required closing conditions in the form

NT∑
k=0

(−1)k F (n)
k,�+1 =

{
CL for n = 0

0 for n �= 0
(32a)

NT∑
k=0

F (n)
k,�+1 =

{
CU for n = 0

0 for n �= 0
(32b)
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IMMERSED BOUNDARY CONDITIONS METHOD 1773

The above process leads to a full matrix of coefficients. In the case of constant timestep simulations,
this matrix needs to be inverted only once with the time advancement reduced to multiplication
of the inverted matrix with the right-hand side of the discretized equation.

5. TESTING OF THE ALGORITHMS

The following discussion is divided into two parts, with the first one being devoted to the immersed
boundary conditions method and the second one being devoted to the domain transformation
method. The tests discussed below have been carried out in the context of the following model
problem (unless otherwise explicitly noted):

yL(x)= −1, yU(x)= 1 + (− 1
2 iSe

i�x + CC), �i = 0, CL = 1, CU = 0 (33)

i.e. the lower wall is smooth, the upper wall has corrugation described by one Fourier mode
parameterized by the amplitude S and the wavenumber �, the slot has the initial temperature equal
to zero and the temperature of the lower wall is instantaneously raised to 1 at t = 0. The term CC
in Equation (33) is the abbreviation for ‘complex conjugates’ and the definition is valid for rest
of the manuscript. We are interested in the prediction of the temperature evolution in the interior
of the slot and in the distribution of heat flux along the walls as a function of the corrugation
amplitude S and the corrugation wavenumber �. The reference, analytical solution of this problem
in the case of smooth walls has the form

�(x, y, t)analytical = a(y + 1) + b +
∞∑

m=1
e−(m�/2)2t Bm sin[m�(y + 1)/2]

where Bm = (m�)[(2a + b) cos(m�) − b]/2, a = (CU − CL)/2 and b=CL.

5.1. Immersed boundary conditions method

As a first step, we wish to demonstrate the spectral accuracy of our algorithm. In the y-direction,
the Chebyshev expansions (12) with coefficients calculated using Galerkin procedure (14) are
guaranteed to be spectrally accurate with the increasing number of terms NT. In most cases,
60 Chebyshev polynomials provided machine accuracy. This number needs to be increased for
� → ∞ (corrugation with shorter wavelength), especially when higher Fourier modes begin to
play a role. The need for a larger number of Chebyshev polynomials under such conditions oc-
curs because of the formation of boundary layers around the corrugated wall in the y-distribution
of the modal functions �(n). These layers become extremely thin for larger values of � and
for higher Fourier modes (see Figure 3). Modal functions change very rapidly inside these lay-
ers while they are nearly zero in the rest of the domain. One needs to use a large number of
polynomials in order to have sufficient resolution inside the boundary layers and avoid spurious
oscillations outside these layers. Typically one needs to use NT ≈ 80 for � = 20 and NT ≈ 160 for
� = 50.

The second aspect of the spectral accuracy involves the convergence of the truncated Fourier
series (9) describing x-variations of the unknown. In all tests dealing with this issue, the number
of Chebyshev polynomials NT was kept sufficiently large in order to reduce the associated error
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Figure 3. Distribution of the real part of the amplitude function �(n)(y, t) as a function of y for t → ∞
(steady state) for higher Fourier modes (n�8) in the area close to the upper wall for the model problem
(33) for �= 1.0 and S = 0.35 (distance between the top and bottom of the corrugation 2S = 0.7) determined

using the IBC method with NM = 16 Fourier modes and NT = 70 Chebyshev polynomials.
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5
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Figure 4. Variations of the Chebyshev norm (34) of the modal function �(n)(y, t) for t → ∞ (steady state)
as a function of the Fourier mode number n for the model problem (33) for the corrugation wavenumber
�= 1.0 and for different amplitudes S of the corrugation determined using the IBC method with NM = 15

Fourier modes and NT = 70 Chebyshev polynomials.

to machine accuracy. Chebyshev norm defined as

‖�(n)‖�̂ =
√∫ 1

−1
�(n)(ŷ, t)�(n)∗(ŷ, t)�̂(ŷ) dŷ, �̂ = 1/

√
1 − ŷ2 (34)

has been adopted as a measure of the ‘magnitude’ of the modal function �(n). Results displayed
in Figure 4 demonstrate that this norm decreases as a function of the mode number n with the rate
of decrease very rapidly reaching the (asymptotic) exponential form.
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Figure 5. Variation in the ‖�U(x, t)‖∞ norm (see Equation (35)) as a function of the total number of
Fourier modes NM used in the computations for t → ∞ (steady state) for the model problem (33) for
the corrugation wavenumber �= 1.0 and for different corrugation amplitudes S evaluated using the IBC

method with NT = 70 Chebyshev polynomials.

Accuracy of the enforcement of boundary conditions (8a) and (8b) is crucial for the immersed
boundary conditions method. While the unknown � should satisfy boundary conditions (4a) and
(4b), only first NM Fourier modes are set to zero. The rest of the available Fourier modes (for
NM + 1<n<N�) provides a suitable measure of the magnitude and spectral decomposition of the
error. For convenience, we use the L∞ norm for � evaluated at the upper wall defined as

‖�U(x, t)‖∞ = sup
0�x�2�/�

|�(x, yU(x), t)| (35)

to judge the performance of the method. This norm is very strict and thus provides an unambiguous
way to judge the accuracy of the boundary conditions. Figure 5 displays variations of ‖�U(x, t)‖∞
as a function of the total number of Fourier modes NM used in the calculations. It can be seen that
the magnitude of contributions of higher modes to the complete solution decreases exponentially.
Distribution of �U(x, t) over a single period is displayed in Figure 6. This function is oscillatory in x
with the maximum occurring around x = �/2, i.e. around the top of the corrugation. The location of
the maximum of the error is associated with the fact that the modal functions �(n) reach maximum
around the extremes of the solution domain (see Figure 3) and thus the contributions of the higher
Fourier modes are relatively more important around the top of the corrugation; the rate of error
reduction as a function of the total number of Fourier modes NM is thus smaller in the vicinity
of the top of the corrugation as compared with its top. This effect is more pronounced for higher
values of � due to the fact that boundary layers in the distribution of �(n) of sufficiently high index
are thinner than the depth of the corrugation.

The implementation of boundary conditions (4a) and (4b) using the immersed boundary con-
ditions method guarantees that the Fourier spectrum of �U should not contain harmonics of order
lower than NM. This property provides a test for accuracy and consistency of the method. Results
shown in Figure 7 demonstrate that the first eight Fourier modes had been eliminated, as expected.

A series of tests had been carried out in order to check if the method produces any spuri-
ous spatial oscillations. Figure 8 illustrates results of a test for the wall with the corrugation
wavenumber � = 3 and the amplitude S = 0.1. In case A, the corrugation was assumed to have
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Figure 6. Distribution of � evaluated at the upper wall for t → ∞ (steady state) for the model problem
(33) for the corrugation wavenumber �= 1.0 and amplitude S = 0.35 evaluated using the IBC method with

NM = 15 Fourier modes and NT = 70 Chebyshev polynomials.
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1.2E-10

Fourier Mode number n

Figure 7. Fourier spectra of distribution of �U for t → ∞ (steady state) for the model problem (33)
with the corrugation amplitude S = 0.1 and the corrugation wavenumber � = 1.0 evaluated using the IBC

method with NM = 8 Fourier modes and NT = 70 Chebyshev polynomials.

the shape of the principal Fourier mode and the calculations had been carried out with NM = 6
Fourier modes. In case B, the same shape was assumed to be represented by the second Fourier
mode (the principal mode has the wavenumber � = 1.5), while in case C it was represented
by the third Fourier mode (the principal mode has the wavenumber � = 1). In order to have
fully equivalent representations, the number of Fourier modes used in cases B and C were
NM = 12 and 18, respectively. The selected representations admitted subharmonics of the 1/2
type in case B and 1/3 type in case C. The Fourier spectra shown in Figure 8 demonstrate the
equivalency of the results in all three cases. No subharmonics had been produced during the solu-
tion process and the modes expected to produce zero contributions in cases B and C behaved as
expected.
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Figure 8. Fourier spectra of �U for t →∞ (steady state) for the model problem (33) with the corrugation
amplitude S = 0.1 and the corrugation wavelength �= 2�/3 determined using three different forms of
Fourier expansions in the IBC method. Case A:� =3.0, NM = 6; case B: � = 1.5, NM = 12 and case C:

� = 1.0, NM = 18. NT = 70 Chebyshev polynomials used in all cases.
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Figure 9. The ‖�U(x, t)‖∞ norm (see Equation (35)) evaluated for t → ∞ (steady case) using the IBC
method as a function of the corrugation amplitude S for selected values of the corrugation wavenumbers
� for the model problem (33). The dashed and solid lines represent results obtained with the NM = 10,
15 Fourier modes, respectively. The reader may note that S = 2 corresponds to the corrugation trough

reaching the center of the slot. NT = 70 Chebyshev polynomials used in the calculations.

Dependence of the boundary error as a function of geometric parameters, i.e. � and S, for a fixed
number of Fourier modes NM has been investigated. The norm ‖�U(x, t)‖∞ was used a measure
of error. Figure 9 illustrates variations of this norm as a function of the corrugation amplitude S for
selected values of the wavenumber �, and Figure 10 shows variations of this norm as a function
of the wavenumber � for selected values of the amplitude S. The reader may note in judging
these results that S = 2 corresponds to a situation when the bottom of the corrugation touches the
lower wall. The available results suggest that the error is at machine accuracy level if � and S are
below certain critical values. Once these values are reached, the error begins to increase rapidly
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Figure 10. The ‖�U(x, t)‖∞ norm (see Equation (35)) evaluated for t → ∞ (steady case) using the IBC
method as a function of the corrugation wavenumber � for selected values of the corrugation amplitude
S for the model problem (33). The dashed and solid lines represent results obtained with the NM = 10,
15 Fourier modes, respectively. The reader may note that S = 2 corresponds to the corrugation trough

reaching the center of the slot. NT = 70 Chebyshev polynomials used in the calculations.
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Figure 11. Instantaneous isotherms in the upper part of a slot bounded by yL(x, t)= −1, yU(x, t)=
1 + (−0.075iei�x + 0.01875ie4i�x + CC) at time t = 0.5 (dot lines), t = 1.0 (dash lines) and t =∞ (solid
lines) determined using both the IBC and the DT methods. Results obtained by both methods overlap.

in a fairly universal manner. These critical values of � and S can be increased by increasing the
number of Fourier modes NM used in the calculation, but the qualitative character of the error
increase remains unchanged.

The above test had been carried out for a corrugation in the form of a single Fourier mode. The
algorithm is general, however, and can deal with any corrugation shape that is represented by a
Fourier expansion. Figure 11 shows instantaneous isotherms in a slot bounded by a smooth wall
from below and wall with shape defined as 1 + (−0.075ieix + 0.01875e4ix + CC) from above.
Figure 12 shows instantaneous heat flux at the upper wall of the same slot.
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Figure 12. Instantaneous heat flux at the upper wall of the slot described in Figure 11 determined
using the IBC and the DT methods with NM = 15 Fourier modes and NT = 80 Chebyshev polynomials.

Results obtained using both methods overlap.
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Figure 13. Variation in the dependent variable � at a test point located at x = �, y = 0.95 in a slot bounded
by yL(x, t)= −1, yU(x, t)= 1 + (−0.05ieix + CC) at a time t = 1 as a function of the time-step size
�t evaluated using both methods (IBC and DT) with NM = 10 Fourier modes and NT = 60 Chebyshev

polynomials. Results obtained by both methods overlap.

Tests discussed so far were focused on the analysis of error associated with the spatial discretiza-
tion. The temporal discretization is second-order accurate for the two-step method and results of
tests shown in Figure 13 demonstrate that this error is indeed second order when the boundary
conditions are enforced using the immersed boundary conditions method. Similar tests for the
one-step method described in Appendix A demonstrate the first-order accuracy (see Figure 13).
The reader may note that the test problem has a steady solution as t → ∞. This solution, which has
been determined numerically using the steady version of the algorithm, agrees with the unsteady
solution determined numerically after about five time units, providing further verification of the
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Figure 14. The norm ‖�T(x, t)‖∞ (see Equation (36)) evaluated for t → ∞ using the DT method as a
function of the corrugation amplitude S for selected values of the corrugation wavenumber � for the
model problem (33). The tested values determined using NM = 10 and 15 Fourier modes are shown using
dashed and solid lines, respectively. The reference values have been determined using NM = 45 Fourier

modes. NT = 100 Chebyshev polynomials were used in all calculations.
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Figure 15. The norm ‖�T(x, t)‖∞ (see Equation (36)) evaluated for t → ∞ using the DT method as a
function of the corrugation wavenumber � for selected values of the corrugation amplitude S for the
model problem (33). The tested values determined using NM = 10 and 15 Fourier modes are shown using

dashed and solid lines, respectively. All other conditions as in Figure 14.

performance of the algorithms. No numerical instability problems have been identified regardless
of whether a direct or an iterative method of solution of the discretized equation was used.

5.2. Domain transformation method

While the algorithm described in Section 4 delivers spectral accuracy, it can be applied only in
geometries that do not lead to singular and near singular mappings. In the case of test problem
(33), the singular mapping occurs for � → ∞ and one should expect accuracy problems when �
becomes too large. This problem is illustrated in Figure 14 showing variations in the error norm
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defined as

‖�T(x, t)‖∞ = sup
0�x�2�/�

|�(x, y	= 0.95, t)com−�(x, y	= 0.95, t)ref| (36)

as a function of the corrugation amplitude S for selected values of the corrugation wavenumber
�, and in Figure 15 as a function of the corrugation wavenumber � for a few selected values of
the corrugation amplitude S. The reference solution �ref that is used for comparisons has been
evaluated numerically using large number of Fourier modes and Chebyshev polynomials so that the
errors associated with the truncations of the Fourier and Chebyshev expansions had been reduced
below the round-off error. It can be seen that the error increases rapidly once a certain critical
value of either the wavenumber � or the amplitude S has been reached. This error rise occurs,
however, for the values of � and S that are larger than those for which a similar error rise occurred
in the case of the IBC method (see Figures 9 and 10).

6. COMPARISON OF THE IBC AND DT METHODS

The IBC and DT methods can deal with a similar class of problems and thus one may inquire which
method is ‘better’. It is clear from the discussion in Sections 3 and 4 that the IBC method results in
simpler equations and thus the programming effort is smaller. The computational efficiency requires
a more detailed discussion. Results displayed in Figure 16 show that the DT method requires use
of fewer Fourier modes in order to achieve the same level of error, and Figure 17 demonstrates that
both methods indeed produce the same results. Table I illustrates computational effort required to
produce a steady-state solution using both methods implemented with the same number of Fourier
modes and Chebyshev polynomials. All tests had been done on the same hardware using Matlab
as the computing environment. The computational effort in this case consists of construction of
the coefficient matrix, inversion of this matrix and multiplication of the inverted matrix by the

1.E-12

1.E-09

1.E-06

0 3 6 9 12
NM

15

DT method

IBC method

Figure 16. Variation in the norm ‖�T(x, t)‖∞ (see Equation (36)) for t → ∞ evaluated using IBC
and DT methods as a function of the number of Fourier modes NM used in the calculations for the
slot bounded by yL(x, t)= −1 and yU(x, t)= 1+ (−0.1eix +CC). The reference quantity has been
evaluated with NM = 20 Fourier modes and NT = 70 polynomials, while the test quantity has been

evaluated with variables NM and NT = 70.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1765–1786
DOI: 10.1002/fld



1782 S. Z. HUSAIN AND J. M. FLORYAN

0 0.2 0.4 0.6 0.8 1
-1

0

1

y

t=1.0

t=

t=0.5

Figure 17. Instantaneous temperature profiles at the x-locations corresponding to the widest (solid lines)
and narrowest (dotted lines) opening of a slot bounded by yL(x, t)= −1, yU(x, t)= 1+(−0.175ie3ix +CC)
determined using the IBC and DT methods with NM = 15 Fourier modes and NT = 70 Chebyshev

polynomials. Results obtained by both methods overlap.

Table I. Comparison of computational times required for the evaluation of the steady-state solution in the
case of test problem (33) with the corrugation wavenumber �= 1 and the corrugation amplitude S = 0.2.

IBC method DT method

Time required (in s) for Time required (in s) for
Number of
Fourier Matrix Matrix Matrix Matrix Matrix Matrix
modes (NM) construction inversion multiplication multiplication inversion multiplication

10 2.5572 6.5694 0.0170 266.5011 6.6357 0.0184
15 8.0496 20.1827 0.0458 592.8096 20.3958 0.0365

Note: Times for different elements of the IBC and DT methods implemented with the same number NM of
Fourier modes produced using NT = 70 Chebyshev polynomials are given.

right-hand side. The reader may note a significantly higher computational cost of construction of
the coefficient matrix in the case of the DT method. Since the DT method requires fewer Fourier
modes to produce the same level of accuracy, as demonstrated in Figure 16, one may inquire if this
could improve the relative performance of this method. Results provided in Table II demonstrate
that the IBC method is still more efficient in spite of the using a larger number of Fourier modes.

The relative performance of both methods in the case of unsteady simulations can be deduced
from Tables I and II. The additional computational effort as compared with the steady-state case
involves one multiplication of the inverted matrix per time step. The DT method could overcome
its initial handicap associated with matrix construction if simulations are to be carried out over a
very long time using constant time step, as the cost of its matrix multiplication is lower than in the
IBC method. In the case of a variable time step, the coefficient matrix needs to be reconstructed
at each time step and then the IBC method becomes significantly more efficient.

We shall now consider potential gains in the efficiency of the IBC method when the direct
solution discussed above is replaced by the decoupled algorithm. Results of tests in the case of
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Table II. Comparison of computational time requirements for different elements of the IBC and DT
methods necessary to produce steady-state solution with a desired accuracy (as measured by norm (36)).

IBC method DT method

Required Time required (in s) for Required Time required (in s) for
number of number of

Desired of Fourier Matrix Matrix Matrix Fourier Matrix Matrix Matrix
accuracy modes NM construction inversion multiplication modes NM multiplication inversion multiplication

10−6 6 0.6721 1.7338 0.0053 3 28.3172 0.3044 0.0021
10−8 10 2.6013 6.5894 0.0127 5 71.5123 1.0716 0.0050
10−10 13 5.3527 13.5591 0.0197 7 134.6521 2.5360 0.0088

Note: Other test conditions as in Table I.

steady solution are illustrated in Table III. The decoupled algorithm is significantly faster for
the whole range of roughness amplitudes for which convergence can be achieved. The solution
oscillates in the case of the most extreme conditions considered in Table III, but does not diverge.
One may note an increase in the number of required iterations as the amplitude of the corrugation
increases.

The relative performance of the direct- and mode-decoupled algorithms in the unsteady case is
illustrated in Table IV. Since the overall accuracy of the simulations is determined by the error
of the temporal discretization, the convergence criterion for the decoupled algorithm in these tests
had been set at 10−5. The cost of using the mode-decoupled algorithm is generally similar to the
cost of the direct algorithm in spite of the fact that a complete solution has to be produced at each
time step in the former case and only a single matrix multiplication is required in the latter case.
The direct algorithm should be faster if long-time simulations with constant time step are required.
This advantage is lost in the case of a variable time step when the decoupled algorithm is much
more efficient due to the cost of matrix construction and inversion in the direct algorithm.

The performance of the decoupled algorithm can be improved by taking advantage of the
information available in the previous time step and re-arranging the iteration strategy. Three
different strategies have been tested and the results are displayed in Table V. Version A is exactly
the same as in the case of steady solution, version B uses extrapolated values of the modal functions
during the first iteration and version C uses only extrapolated values of the modal functions and
eliminates iterations. In all cases, the method remains second-order accurate as the extrapolation
provides second-order accuracy in time. The results (see Table V) show significant improvements
of performance of versions B and C over version A but only when the corrugation amplitude
is not too large. Version C is least resistant to the increase in the amplitude and it diverges at
certain critical value of S (which depends on the corrugation wavenumber). Version B can work
with amplitudes S twice as big as in version C, but its performance rapidly deteriorates and
becomes worse than version A as corrugation amplitude increases. Version A also diverges but
at the amplitude levels comparable to those where the accuracy of the IBC algorithm becomes
questionable (see Figures 9 and 10).

The above results show that the decoupled IBC algorithm is generally more efficient than the
direct algorithm. This algorithm would also be favored because of the reduced memory use and
potential gains offered by parallelization. No attempt was made as a part of this work to measure
gains associated with the last two effects.
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Table III. Variations in time requirements for the direct and decoupled IBC algorithms in the case of
steady-state solution determined with the predetermined accuracy (measured by norm (36)) as a function
of the corrugation amplitude S for the model problem (33) with the corrugation wavenumber � = 1.0

determined using NT = 70 Chebyshev polynomials.

Direct IBC method
Iterative IBC method

Time required (in s) for
Number of Total time

Desired Required Matrix Matrix Matrix Required iterations required (in
S accuracy NM construction inversion multiplication NM required s) to solve

10−6 3 0.1162 0.3065 0.0014 3 3 0.0742
0.05 10−8 5 0.3947 1.1330 0.0034 5 4 0.0920

10−10 7 0.9990 2.5726 0.0068 7 5 0.1183
10−6 4 0.2345 0.6341 0.0024 4 4 0.0823

0.1 10−8 6 0.6498 1.7159 0.0047 6 6 0.1207
10−10 9 1.9178 5.0107 0.0098 9 8 0.1816
10−6 5 0.4077 1.1445 0.0039 5 5 0.1023

0.15 10−8 8 1.4427 3.6312 0.0087 8 9 0.1753
10−10 11 3.3894 8.5863 0.0148 11 18 0.4367
10−6 6 0.6721 1.7338 0.0053 6 6 0.1205

0.2 10−8 10 2.6013 6.5894 0.0127 10 23 0.4947
10−10 13 5.3527 13.5591 0.0197 13 63 1.7762
10−6 10 2.5966 6.7209 0.0127 10 12 0.2684

0.25 10−8 13 5.3632 13.7868 0.0206 13 97 2.5722
10−10 17 11.5617 29.0973 0.0342 17 476 17.5857
10−6 12 4.3526 11.0597 0.0169 12 31 0.8163

0.3 10−8 17 11.5587 29.1068 0.0337 17 737 27.8263
10−10 21 21.2536 53.0861 0.0504 Cannot achieve desired accuracy

Note: Other test conditions as in Table I.

Table IV. Comparison of time requirements associated with the direct and decoupled algorithms imple-
mented with the same number of Fourier modes in the IBC method.

Direct IBC method

Time required (in s) for
Iterative IBC method

Matrix
Number of multiplication Time required for
Fourier Matrix Matrix for 100 time simulation over 100
modes (NM) construction inversion steps time steps

10 2.5398 6.5706 2.7452 5.0152
15 8.0331 20.3538 5.1756 96.5563

Note: The two-step method with the time step �t = 0.01 was used with the convergence criterion for the
iterative solution set at 10−5. Other test conditions as in Table I.
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Table V. Comparison of time requirements of different decoupling schemes
for the IBC method as a function of the corrugation amplitude S with the

corrugation wavenumber � = 1.0.

Total time required for 100 time steps (in s)
Corrugation
amplitude, S Version A Version B Version C

0.05 11.6123 5.4772 5.3845
0.10 23.6266 6.3542 4.8706
0.15 44.6777 31.8473 Diverges
0.20 96.5563 256.4365 Diverges
0.25 578.3254 Diverges Diverges
0.30 Diverges Diverges Diverges

Note: Calculations have been carried out with NM = 15 Fourier modes and
NT = 70 Chebyshev polynomials. Version A—complete iterations, version
B—complete iterations coupled with extrapolation for the first iteration, version
C—extrapolation with no iterations. Other test conditions as in Table IV.

7. CONCLUSION

An immersed boundary conditions method was developed for unsteady flow problems in irregular,
corrugated geometries governed by the Laplace operator. The method uses a fixed computational
domain with boundaries of the flow domain submerged inside the computational domain. The
problem formulation is closed by replacing boundary conditions normally applied at the ends of
the computational domain with constraints enforced along the boundaries of the flow domain. One-
and two-step implicit methods have been developed. It has been demonstrated that the algorithm
delivers spectral accuracy for the spatial discretization and the first- and second-order accuracies
for the temporal discretization in the case of the one- and two-step methods, respectively. The error
of spatial discretization grows rapidly when the wavenumber and the amplitude that characterize
corrugation grow beyond certain critical level. The efficiency of the algorithm has been judged
by comparing it with the classical algorithm based on the domain transformation. The immersed
boundary conditions method results in less programming effort and is generally more efficient
computationally when compared with the domain transformation method. It has been shown that
the performance of the immersed boundary conditions method can be further improved by using
an iterative solution based on mode decoupling (mode-decoupled algorithm) rather than the direct
solution. Three versions of this algorithm have been considered with the most efficient one limited
to small corrugation amplitudes and the least efficient one having the range of applications similar
to that found in the case of the direct solution. In all cases, mode-decoupled algorithm was found to
be more efficient than the direct algorithm. This algorithm also offers potential for efficiency gains
through parallelization of the computations and through significant reduction of memory use.

APPENDIX A

Temporal discretization of (10) using a one-step implicit method results in

[�2D2 − (n2�2 + �t−1)]�(n)
�+1 = −�t−1�(n)

� , n ∈ 〈0, NM〉
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Temporal discretization of (25) using the same method results in

D2�(n)
�+1 +

NM∑
s=−NM

[w(n−s)
1 + is�w

(n−s)
2 ]D�(s)

�+1 −
NM∑

s=−NM

[(s�)2 + �t−1]w(n−s)
3 �(s)

�+1

=−�t−1
NM∑

s=−NM

w
(n−s)
3 �(s)

� , n ∈ 〈0, NM〉

APPENDIX B

Expressions required in Equation (25):

	x = [(yL)�(	 − 1) − (yU)�(	 + 1)]/(yU − yL)

	xx = 	(yU − yL)[(yL)� − (yU)�][(yL)�� − (yU)��] + 2yL(yU)�� − 2yU(yL)��

(yU − yL)2

+ −2	[(yU)� − (yL)�]2 + 2[(yU)2� − (yL)2�]
(yU − yL)2

	y = 2

yU − yL

where the subscript � denotes derivative d/d�.
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